Identification of Salmonella enterica Serovar Dublin-Specific Sequences by Subtractive Hybridization and Analysis of Their Role in Intestinal Colonization and Systemic Translocation in Cattle

Author:

Pullinger Gillian D.1,Dziva Francis1,Charleston Bryan1,Wallis Timothy S.1,Stevens Mark P.1

Affiliation:

1. Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom

Abstract

ABSTRACT Salmonella enterica serovar Dublin is a host-restricted serovar associated with typhoidal disease in cattle. In contrast, the fowl-associated serovar S. enterica serovar Gallinarum is avirulent in calves, yet it invades ileal mucosa and induces enteritis at levels comparable to those induced by S. enterica serovar Dublin. Suppression subtractive hybridization was employed to identify S. enterica serovar Dublin strain SD3246 genes absent from S. enterica serovar Gallinarum strain SG9. Forty-one S. enterica serovar Dublin fragments were cloned and sequenced. Among these, 24 mobile-element-associated genes were identified, and 12 clones exhibited similarity with sequences of known or predicted function in other serovars. Three S. enterica serovar Dublin-specific regions were homologous to regions from the genome of Enterobacter sp. strain 638. Sequencing of fragments adjacent to these three sequences revealed the presence of a 21-kb genomic island, designated S. enterica serovar Dublin island 1 (SDI-1). PCR analysis and Southern blotting showed that SDI-1 is highly conserved within S. enterica serovar Dublin isolates but rarely found in other serovars. To probe the role of genes identified by subtractive hybridization in vivo, 24 signature-tagged S. enterica serovar Dublin SD3246 mutants lacking loci not present in Salmonella serovar Gallinarum SG9 were created and screened by oral challenge of cattle. Though attenuation of tagged SG9 and SD3246 Salmonella pathogenicity island-1 (SPI-1) and SPI-2 mutant strains was detected, no obvious defects of these 24 mutants were detected. Subsequently, a ΔSDI-1 mutant was found to exhibit weak but significant attenuation compared with the parent strain in coinfection of calves. SDI-1 mutation did not impair invasion, intramacrophage survival, or virulence in mice, implying that SDI-1 does not influence fitness per se and may act in a host-specific manner.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3