Influenza A virus RNA-dependent RNA polymerase: analysis of RNA synthesis in vitro

Author:

Galarza J M1,Peng Q1,Shi L1,Summers D F1

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of California at Irvine, California 92717-4025, USA.

Abstract

Influenza A virus RNA-dependent RNA polymerase, purified from virion ribonucleoprotein particles and from which endogenous genomic RNA (vRNA) has been depleted by treatment with micrococcal nuclease, was used to study transcription initiation, elongation, and termination in vitro. Templates that contained either minus- or plus-sense influenza virus nucleoprotein minigenes with conserved 5' and 3' termini and the uridylate tract were constructed. The dinucleotide ApG and alfalfa mosaic virus RNA4 (AlMV4) were used as primers. ApG primed the synthesis of full-length positive-strand or cRNA products and shorter transcripts, depending upon the molar ratio between the nucleoprotein and the vRNA template. Sequence analysis of the ends of these transcripts demonstrated that the 5' termini of both transcripts and the 3' terminus of the full-length product were complementary to the 3' and 5' termini of the vRNA template, respectively, whereas the 3' terminus of the incomplete product corresponded to a sequence located 40 bases downstream from the 5' terminus of the template and was about 20 nucleotides downstream from the uridylate tract, which is the putative signal for polyadenylation. Binding of the cap structure of AlMV4 by the polymerase activated RNA synthesis by ligation-elongation of small genomic RNA fragments which were likely derived from a genome segment protected by the polymerase from micrococcal nuclease digestion. The sequence of these fragments mapped to a region 14 to 28 nucleotides upstream of the 3' terminus of the viral genome. Polymerase subunit involvement in transcription initiation with ApG or AlMV4 was characterized by studying the effect of purified polyclonal antisubunit immunoglobulins of the G class (IgGs) in transcription assays. These results showed that anti-PB2 IgG inhibited transcription initiation in both ApG- and AlMV4-primed reactions, whereas anti-PB1 antibodies also blocked transcription initiated with AlMV4. The differences observed in product size, product sequence, and differential inhibition by antisubunit IgGs are discussed. These observations would support the notion that the influenza virus RNA-dependent RNA polymerase undergoes a conformational change after the binding of the cap structure of host cell heterogeneous nuclear RNA by PB2, which then usually leads to endonucleolytic cleavage of the capped primer 13 nucleotides downstream from the cap.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3