Peptide Nucleic Acid Antisense Oligomer as a Therapeutic Strategy against Bacterial Infection: Proof of Principle Using Mouse Intraperitoneal Infection

Author:

Tan Xin-Xing1,Actor Jeffrey K.2,Chen Yin1

Affiliation:

1. Cytogenix, Inc., 3100 Wilcrest Dr., Suite 140, Houston, Texas 77042

2. Department of Pathology and Laboratory Medicine, University of Texas Medical School, 6431 Fannin St., Houston, Texas 77030

Abstract

ABSTRACT Antisense oligodeoxynucleotides (ODNs) and their analogs have been successfully utilized to inhibit gene expression and bacterial growth in vitro or in cell culture. In this study, acpP -targeting antisense peptide nucleic acid (PNA) and its peptide conjugate were tested as potential antibacterial agents in two groups of experiments using a mouse model. In the first group, Escherichia coli mutant strain SM101 with a defective outer membrane was used to induce bacteremia and peritonitis in BALB/c mice by intraperitoneal (i.p.) injection. The resulting bacteremia was fatal within 48 h. A single i.p injection of 5 nmol (or more) of PNA administered 30 min before bacterial challenge significantly reduced the bacterial load in mouse blood. Reductions in serum concentrations of the proinflammatory cytokines tumor necrosis factor alpha, interleukin-1β (IL-1β), IL-6, and IL-12 were also observed. PNA treatment was effective in rescuing 100% of infected animals. In the second group, bacteremia in BALB/c mice was induced by i.p. injection of E. coli wild-type strain K-12. The infected mice were treated by a single intravenous injection of peptide-PNA conjugate 30 min after bacterial challenge. Treatment with the peptide-PNA conjugate significantly reduced the K-12 load, with modest reduction in cytokine concentrations. The conjugate treatment was also able to rescue up to 60% of infected animals. This report is the first demonstration of ODNs' antibacterial efficacy in an animal disease model. The ability of PNA and its peptide conjugate to inhibit bacterial growth and to prevent fatal infection demonstrates the potential for this new class of antibacterial agents.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3