The extracellular domain of the Epstein-Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation

Author:

Spriggs M K1,Armitage R J1,Comeau M R1,Strockbine L1,Farrah T1,Macduff B1,Ulrich D1,Alderson M R1,Müllberg J1,Cohen J I1

Affiliation:

1. Immunex Corporation, Seattle, Washington 98101, USA.

Abstract

The Epstein-Barr virus BZLF2 gene encodes a glycoprotein that associates with gH and gL and facilitates the infection of B lymphocytes. In order to determine whether the BZLF2 protein recognizes a B-cell-specific surface antigen, a soluble protein containing the extracellular portion of the BZLF2 protein linked to the Fc portion of human immunoglobulin G1 (BZLF2.Fc) was expressed from mammalian cells. BZLF2.Fc was used in an expression cloning system and found to bind to a beta-chain allele of the HLA-DR locus of the class II major histocompatibility complex (MHC). Analysis of amino- and carboxy-terminal deletion mutants of the BZLF2.Fc protein indicated that the first 90 amino acids of BZLF2.Fc are not required for HLA-DR beta-chain recognition. Site-directed mutagenesis of an HLA-DR beta-chain cDNA and subsequent immunoprecipitation of expressed mutant beta-chain proteins using BZLF2.Fc indicated that the beta1 domain, which participates in the formation of peptide binding pockets, is required for BZLF2.Fc recognition. The addition of BZLF2.Fc to sensitized peripheral blood mononuclear cells in vitro abolished their proliferative response to antigen and inhibited cytokine-dependent cytotoxic T-cell generation in mixed lymphocyte cultures. Flow-cytometric analysis of Akata cells induced to express late Epstein-Barr virus antigens indicated that expression of BZLF2 did not result in reduced surface expression levels of MHC class II. The ability of BZLF2.Fc to bind to the HLA-DR beta chain suggests that the BZLF2 protein may interact with MHC class II on the surfaces of B cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3