Rapid Ped-2E9 Cell-Based Cytotoxicity Analysis and Genotyping of Bacillus Species

Author:

Gray Kristen M.1,Banada Padmapriya P.1,O'Neal Erin1,Bhunia Arun K.1

Affiliation:

1. Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907

Abstract

ABSTRACT Bacillus species causing food-borne disease produce multiple toxins eliciting gastroenteritis. Toxin assays with mammalian cell cultures are reliable but may take 24 to 72 h to complete and also lack sensitivity. Here, a sensitive and rapid assay was developed using a murine hybridoma Ped-2E9 cell model. Bacillus culture supernatants containing toxins were added to a Ped-2E9 cell line and analyzed for cytotoxicity with an alkaline phosphatase release assay. Most Bacillus cereus strains produced positive cytotoxicity results within 1 h, and data were comparable to those obtained with the standard Chinese hamster ovary (CHO)-based cytotoxicity assay, which took about 72 h to complete. Moreover, the Ped-2E9 cell assay had 25- to 58-fold-higher sensitivity than the CHO assay. Enterotoxin-producing Bacillus thuringiensis also gave positive results with Ped-2E9 cells, while several other Bacillus species were negative. Eight isolates from food suspected of Bacillus contamination were also tested, and only one strain, which was later confirmed as B. cereus , gave a positive result. In comparison with two commercial diarrheal toxin assay kits (BDE-VIA and BCET-RPLA), the Ped-2E9 assay performed more reliably. Toxin fractions of >30 kDa showed the highest degree of cytotoxicity effects, and heat treatment significantly reduced the toxin activity, indicating the involvement of a heat-labile high-molecular-weight component in Ped-2E9 cytotoxicity. PCR results, in most cases, were in agreement with the cytotoxic potential of each strain. Ribotyping was used to identify cultures and indicated differences for several previously reported isolates. This Ped-2E9 cell assay could be used as a rapid (∼1-h) alternative to current methods for sensitive detection of enterotoxins from Bacillus species.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3