Stimulus Duration and Response Time Independently Influence the Kinetics of Lytic Cycle Reactivation of Epstein-Barr Virus

Author:

Countryman Jill1,Gradoville Lyndle2,Bhaduri-McIntosh Sumita2,Ye Jianjiang2,Heston Lee2,Himmelfarb Sarah1,Shedd Duane2,Miller George123

Affiliation:

1. Departments of Molecular Biophysics and Biochemistry

2. Pediatrics

3. Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520

Abstract

ABSTRACT Epstein-Barr virus (EBV) can be reactivated from latency into the lytic cycle by many stimuli believed to operate by different mechanisms. Cell lines containing EBV differ in their responses to inducing stimuli, yet all stimuli require de novo protein synthesis (44). A crucial step preliminary to identifying these proteins and determining when they are required is to measure the duration of stimulus and response time needed for activation of expression of EBV BRLF1 and BZLF1, the earliest viral indicators of reactivation. Here we show, with four EBV-containing cell lines that respond to different inducing agents, that stimuli that are effective at reactivating EBV can be divided into two main groups. The histone deacetylase inhibitors sodium butyrate and trichostatin A require a relatively long period of exposure, from 2 to 4 h or longer. Phorbol esters, anti-immunoglobulin G (anti-IgG), and, surprisingly, 5-aza-2′-deoxycytidine require short exposures of 15 min or less. The cell/virus background influences the response time. Expression of the EBV BZLF1 and BRLF1 genes can be detected before 2 h in Akata cells treated with anti-IgG, but both long- and short-duration stimuli required 4 or more hr to activate BZLF1 and BRLF1 expression in HH514-16, Raji, or B95-8 cells. Thus, stimulus duration and response time are independent variables. Neither stimulus duration nor response time can be predicted by the number of cells activated into the lytic cycle. These experiments shed new light on the earliest events leading to lytic cycle reactivation of EBV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3