Recursive genome engineering decodes the evolutionary origin of an essential thymidylate kinase activity in Pseudomonas putida KT2440

Author:

Wirth Nicolas T.1,Rohr Katja1,Danchin Antoine2,Nikel Pablo I.1ORCID

Affiliation:

1. The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens , Lyngby, Denmark

2. School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong , Pokfulam, Hong Kong

Abstract

ABSTRACT Thymidylate kinases (TMPKs) play an essential role in DNA biosynthesis across all domains of life by catalyzing dTMP phosphorylation to dTDP. In Pseudomonas putida KT2440, a model Gram-negative soil bacterium, tmk is disrupted by a 65-kb genomic island (GI), posing questions about the origin of the essential TMPK function. To solve this long-standing evolutionary riddle, we addressed three competing hypotheses: (i) assembly of two Tmk segments into a functional protein, (ii) complementation by a deoxynucleotide monophosphate kinase encoded within the GI, or (iii) fulfillment of the essential function by the product of PP_3363 , yet another gene annotated as “thymidylate kinase.” Systematic genome engineering, quantitative physiology and targeted proteomics, complementation assays, phylogenetic analysis, and structure homology modeling were combined to investigate the role of genes within the GI. Our findings revealed that the GI-encoded dNMPK gene PP_1964 plays a critical role in complementing the disrupted TMPK function—exposing a non-essential character for the native PP_3363 gene and the tmk pseudogene. This dNMPK was found to be structurally related to that of bacteriophage T4, as part of a distinct evolutionary domain connected to mobile genetic elements and phages. The recursive genome reduction approach in this work deepens our understanding of the genetic architecture of a model bacterium while it provides evidence that the essential TMPK function has been acquired by horizontal gene transfer. Furthermore, the insights gained in the present study have broader implications for understanding the essentiality and functionality of dNMPK homologs in other bacteria. IMPORTANCE Investigating fundamental aspects of metabolism is vital for advancing our understanding of the diverse biochemical capabilities and biotechnological applications of bacteria. The origin of the essential thymidylate kinase function in the model bacterium Pseudomonas putida KT2440, seemingly interrupted due to the presence of a large genomic island that disrupts the cognate gene, eluded a satisfactory explanation thus far. This is a first-case example of an essential metabolic function, likely acquired by horizontal gene transfer, which “landed” in a locus encoding the same activity. As such, foreign DNA encoding an essential dNMPK could immediately adjust to the recipient host—instead of long-term accommodation and adaptation. Understanding how these functions evolve is a major biological question, and the work presented here is a decisive step toward this direction. Furthermore, identifying essential and accessory genes facilitates removing those deemed irrelevant in industrial settings—yielding genome-reduced cell factories with enhanced properties and genetic stability.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3