Powering up antifungal treatment: using small molecules to unlock the potential of existing therapies

Author:

Shapiro Rebecca S.1ORCID,Gerstein Aleeza C.23ORCID

Affiliation:

1. Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada

2. Department of Microbiology, University of Manitoba , Winnipeg, Manitoba, Canada

3. Department of Statistics, University of Manitoba , Winnipeg, Manitoba, Canada

Abstract

ABSTRACT Fungal pathogens are increasingly appreciated as a significant infectious disease challenge. Compared to bacteria, fungal cells are more closely related to human cells, and few classes of antifungal drugs are available. Combination therapy offers a potential solution to reduce the likelihood of resistance acquisition and extend the lifespan of existing antifungals. There has been recent interest in combining first-line drugs with small-molecule adjuvants. In a recent article, Alabi et al. identified 1,4-benzodiazepines as promising molecules to enhance azole activity in pathogenic Candida spp. (P. E. Alabi, C. Gautier, T. P. Murphy, X. Gu, M. Lepas, V. Aimanianda, J. K. Sello, I. V. Ene, 2023, mBio https://doi.org/10.1128/mbio.00479-23 ). These molecules have no antifungal activity on their own but exhibited significant potentiation of fluconazole in azole-susceptible and -resistant isolates. Additionally, the 1,4-benzodiazepines increased the fungicidal activity of azoles that are typically fungistatic to Candida spp., inhibited filamentation (a virulence-associated trait), and accordingly increased host survival in Galleria mellonella . This research thus provides another encouraging step on the critical pathway toward reducing mortality due to antimicrobial resistance.

Funder

CIFAR Azrieli Global Scholars

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Reference52 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3