Dual localization of receptor-type adenylate cyclases and cAMP response protein 3 unveils the presence of two putative signaling microdomains in Trypanosoma cruzi

Author:

Chiurillo Miguel A.1ORCID,Carlson Joshua1,Bertolini Mayara S.23,Raja Aqsa1,Lander Noelia1ORCID

Affiliation:

1. Department of Biological Sciences, University of Cincinnati , Cincinnati, Ohio, USA

2. Center for Tropical and Emerging Global Diseases, University of Georgia , Athens, Georgia, USA

3. Department of Cellular Biology, University of Georgia , Athens, Georgia, USA

Abstract

ABSTRACT Trypanosoma cruzi is the etiologic agent of Chagas disease, a leading cause of disability and premature death in the Americas. This parasite spends its life between a triatomine insect and a mammalian host, transitioning between developmental stages in response to microenvironmental changes. Among the second messengers driving differentiation in T. cruzi , cAMP has been shown to mediate metacyclogenesis and response to osmotic stress, but this signaling pathway remains largely unexplored in this parasite. Adenylate cyclases (ACs) catalyze the conversion of ATP to cAMP. They comprise a multigene family encoding putative receptor-type ACs in T. cruzi . Using protein sequence alignment, we classified them into five groups and chose a representative member from each group to study their localization (TcAC1–TcAC5). We expressed an HA-tagged version of each protein in T. cruzi and performed immunofluorescence analysis. A peculiar dual localization of TcAC1 and TcAC2 was observed in the flagellar distal domain and in the contractile vacuole complex (CVC), and their enzymatic activity was confirmed by gene complementation in yeast. Furthermore, TcAC1 overexpressing parasites showed an increased metacyclogenesis, a defect in host cell invasion, and a reduced intracellular replication, highlighting the importance of this protein throughout T. cruzi life cycle. These mutants were more tolerant to hypoosmotic stress and showed a higher adhesion capacity during in vitro metacyclogenesis, whereas the wild-type phenotype was restored after disrupting TcAC1 localization. Finally, TcAC1 was found to interact with cAMP response protein 3 (TcCARP3), co-localizing with this protein in the flagellar tip and CVC. IMPORTANCE We identified three components of the cAMP signaling pathway (TcAC1, TcAC2, and TcCARP3) with dual localization in Trypanosoma cruzi : the flagellar distal domain and the CVC, structures involved in cell adhesion and osmoregulation, respectively. We found evidence on the role of TcAC1 in both cellular processes, as well as in metacyclogenesis. Our data suggest that TcACs act as signal sensors and transducers through cAMP synthesis in membrane microdomains. We propose a model in which TcACs sense the harsh conditions in the triatomine hindgut (nutrient deprivation, acidic pH, osmotic stress, ionic composition, hydrophobic interactions) and become active. Synthesis of cAMP then triggers cell adhesion prior completion of metacyclogenesis , while mediating a response to osmotic stress in the parasite. These results shed light into the mechanisms driving cAMP-mediated cell differentiation in T. cruzi , while raising new questions on the activation of TcACs and the role of downstream components of this pathway.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3