Affiliation:
1. Department of General Pathology and Internal Medicine, Academic Center for Dentistry Amsterdam (ACTA), The Netherlands.
Abstract
Chronic periodontitis is characterized by dense infiltrations of B and T lymphocytes within the gingival connective tissue. Distinct anaerobic gram-negative bacteria as well as autoimmunity to collagen have been reported to play a role in the etiology and the pathogenesis of this disease. Here we describe the cloning and characterization of CD4+ and CD8+ T lymphocytes isolated from inflamed gingival tissue obtained from four patients with chronic periodontitis. Clones were raised with phytohemagglutinin and interleukin-2 and tested for proliferation in response to whole-cell antigens of Porphyromonas gingivalis, Prevotella intermedia, Actinobacillus actinomycetemcomitans, human collagen type I, and two bacterial heat shock proteins. CD4+ T-cell clones reactive with collagen type I were obtained from all four patients. Eighty percent of these clones had phenotypes resembling the mouse type 2 T helper (Th) phenotype, i.e., they produced high levels of interleukin-4 and low levels of gamma interferon. No collagen-type-I-reactive CD8+ clones were obtained. Bacterial-antigen-reactive CD4+ and/or CD8+ T-cell clones were also obtained from each patient, and the majority of the clones showed a Th0-like cytokine pattern and produced equal amounts of interleukin-4 and gamma interferon. Although most clones were reactive with P. intermedia, it seems that the immune response is not strictly directed against this particular microorganism, as clones reactive with one of the other bacteria were also obtained from two patients. We propose that collagen-specific CD4+ Th2-like T cells contribute to the chronicity of periodontitis but that their modes of activation might be controlled by Th0-like T cells specific for periodontitis-associated bacteria.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献