Base Excision Repair Is Limited by Different Proteins in Male Germ Cell Nuclear Extracts Prepared from Young and Old Mice

Author:

Intano Gabriel W.1,McMahan C. Alex2,McCarrey John R.3,Walter Ronald B.4,McKenna Allison E.5,Matsumoto Yoshihiro5,MacInnes Mark A.6,Chen David J.7,Walter Christi A.18

Affiliation:

1. Department of Cellular & Structural Biology

2. Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900

3. Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245

4. Department of Chemistry and Biochemistry, Southwest Texas State University, San Marcos, Texas 78666

5. Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111

6. Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

7. Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

8. South Texas Veterans Health Care System, Audie L. Murphy Hospital, San Antonio, Texas 78284

Abstract

ABSTRACT The combined observations of elevated DNA repair gene expression, high uracil-DNA glycosylase-initiated base excision repair, and a low spontaneous mutant frequency for a lacI transgene in spermatogenic cells from young mice suggest that base excision repair activity is high in spermatogenic cell types. Notably, the spontaneous mutant frequency of the lacI transgene is greater in spermatogenic cells obtained from old mice, suggesting that germ line DNA repair activity may decline with age. A paternal age effect in spermatogenic cells is recognized for the human population as well. To determine if male germ cell base excision repair activity changes with age, uracil-DNA glycosylase-initiated base excision repair activity was measured in mixed germ cell (i.e., all spermatogenic cell types in adult testis) nuclear extracts prepared from young, middle-aged, and old mice. Base excision repair activity was also assessed in nuclear extracts from premeiotic, meiotic, and postmeiotic spermatogenic cell types obtained from young mice. Mixed germ cell nuclear extracts exhibited an age-related decrease in base excision repair activity that was restored by addition of apurinic/apyrimidinic (AP) endonuclease. Uracil-DNA glycosylase and DNA ligase were determined to be limiting in mixed germ cell nuclear extracts prepared from young animals. Base excision repair activity was only modestly elevated in pachytene spermatocytes and round spermatids relative to other spermatogenic cells. Thus, germ line short-patch base excision repair activity appears to be relatively constant throughout spermatogenesis in young animals, limited by uracil-DNA glycosylase and DNA ligase in young animals, and limited by AP endonuclease in old animals.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3