New Multiple-Deletion Method for the Corynebacterium glutamicum Genome, Using a Mutant lox Sequence

Author:

Suzuki Nobuaki1,Nonaka Hiroshi1,Tsuge Yota12,Inui Masayuki1,Yukawa Hideaki12

Affiliation:

1. Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizu-Cho, Soraku-Gun, Kyoto 619-0292

2. Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan

Abstract

ABSTRACT Due to the difficulty of multiple deletions using the Cre/ loxP system, a simple, markerless multiple-deletion method based on a Cre / mutant lox system combining a right-element (RE) mutant lox site with a left-element (LE) mutant lox site was employed for large-scale genome rearrangements in Corynebacterium glutamicum . Eight distinct genomic regions that had been identified previously by comparative analysis of C. glutamicum R and C. glutamicum 13032 genomes were targeted for deletion. By homologous recombination, LE and RE mutant lox sites were integrated at each end of a target region. Highly efficient and accurate deletions between the two chromosomal mutant lox sites in the presence of Cre recombinase were realized. A deletion mutant lacking 190 kb of chromosomal regions, encoding a total of 188 open reading frames (ORFs), was obtained. These deletions represent the largest genomic excisions in C. glutamicum reported to date. Despite the loss of numerous predicted ORFs, the mutant exhibited normal growth under standard laboratory conditions. The Cre/ loxP system using a pair of mutant lox sites provides a new, efficient genome rearrangement technique for C. glutamicum . It should facilitate the understanding of genome functions of microorganisms.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3