Cloning of Beauveria bassiana Chitinase Gene Bbchit1 and Its Application To Improve Fungal Strain Virulence

Author:

Fang Weiguo1,Leng Bo1,Xiao Yuehua1,Jin Kai1,Ma Jincheng1,Fan Yanhua1,Feng Jing1,Yang Xingyong1,Zhang Yongjun1,Pei Yan1

Affiliation:

1. Biotechnology Research Center, Southwest Agricultural University, Beibei, Chongqing, People's Republic of China

Abstract

ABSTRACT Entomopathogenic fungi can produce a series of chitinases, some of which act synergistically with proteases to degrade insect cuticle. However, chitinase involvement in insect fungus pathogenesis has not been fully characterized. In this paper, an endochitinase, Bbchit1, was purified to homogeneity from liquid cultures of Beauveria bassiana grown in a medium containing colloidal chitin. Bbchit1 had a molecular mass of about 33 kDa and pI of 5.4. Based on the N-terminal amino acid sequence, the chitinase gene, Bbchit1 , and its upstream regulatory sequence were cloned. Bbchit1 was intronless, and there was a single copy in B. bassiana . Its regulatory sequence contained putative CreA/Crel carbon catabolic repressor binding domains, which was consistent with glucose suppression of Bbchit1 . At the amino acid level, Bbchit1 showed significant similarity to a Streptomyces avermitilis putative endochitinase, a Streptomyces coelicolor putative chitinase, and Trichoderma harzianum endochitinase Chit36Y. However, Bbchit1 had very low levels of identity to other chitinase genes previously isolated from entomopathogenic fungi, indicating that Bbchit1 was a novel chitinase gene from an insect-pathogenic fungus. A gpd-Bbchit1 construct, in which Bbchit1 was driven by the Aspergiullus nidulans constitutive promoter, was transformed into the genome of B. bassiana , and three transformants that overproduced Bbchit1 were obtained. Insect bioassays revealed that overproduction of Bbchit1 enhanced the virulence of B. bassiana for aphids, as indicated by significantly lower 50% lethal concentrations and 50% lethal times of the transformants compared to the values for the wild-type strain.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3