Rhodopseudomonas palustris Regulons Detected by Cross-Species Analysis of Alphaproteobacterial Genomes

Author:

Conlan Sean1,Lawrence Charles12,McCue Lee Ann1

Affiliation:

1. The Wadsworth Center, New York State Department of Health, Albany, New York 12201

2. Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912

Abstract

ABSTRACT Rhodopseudomonas palustris , an α-proteobacterium, carries out three of the chemical reactions that support life on this planet: the conversion of sunlight to chemical-potential energy; the absorption of carbon dioxide, which it converts to cellular material; and the fixation of atmospheric nitrogen into ammonia. Insight into the transcription-regulatory network that coordinates these processes is fundamental to understanding the biology of this versatile bacterium. With this goal in mind, we predicted regulatory signals genomewide, using a two-step phylogenetic-footprinting and clustering process that we had developed previously. In the first step, 4,963 putative transcription factor binding sites, upstream of 2,044 genes and operons, were identified using cross-species Gibbs sampling. Bayesian motif clustering was then employed to group the cross-species motifs into regulons. We have identified 101 putative regulons in R. palustris , including 8 that are of particular interest: a photosynthetic regulon, a flagellar regulon, an organic hydroperoxide resistance regulon, the LexA regulon, and four regulons related to nitrogen metabolism (FixK 2 , NnrR, NtrC, and σ 54 ). In some cases, clustering allowed us to assign functions to proteins that previously had been annotated with only putative functions; we have identified RPA0828 as the organic hydroperoxide resistance regulator and RPA1026 as a cell cycle methylase. In addition to predicting regulons, we identified a novel inverted repeat that likely forms a highly conserved stem-loop and that occurs downstream of over 100 genes.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3