Metabolic Engineering of the Purine Pathway for Riboflavin Production in Ashbya gossypii

Author:

Jiménez Alberto1,Santos María A.1,Pompejus Markus2,Revuelta José L.1

Affiliation:

1. Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain

2. BASF-Aktiengesellschaft, GVF/C-A30, 67056 Ludwigshafen, Germany

Abstract

ABSTRACT Purine nucleotides are essential precursors for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and the biosynthesis of several amino acids and vitamins such as riboflavin. GTP is the immediate precursor for riboflavin biosynthesis, and its formation through the purine pathway is subject to several regulatory mechanisms in different steps. Extracellular purines repress the transcription of most genes required for de novo ATP and GTP synthesis. Additionally, three enzymes of the pathway, phosphoribosyl pyrophosphate (PRPP) amidotransferase, adenylosuccinate synthetase, and IMP dehydrogenase, are subject to feedback inhibition by their end products. Here we report the characterization and manipulation of the committed step in the purine pathway of the riboflavin overproducer Ashbya gossypii . We report that phosphoribosylamine biosynthesis in A. gossypii is negatively regulated at the transcriptional level by extracellular adenine. Furthermore, we show that ATP and GTP exert a strong inhibitory effect on the PRPP amidotransferase from A. gossypii . We constitutively overexpressed the Ag ADE4 gene encoding PRPP amidotransferase in A. gossypii , thereby abolishing the adenine-mediated transcriptional repression. In addition, we replaced the corresponding residues (aspartic acid 310 , lysine 333 , and alanine 417 ) that have been described to be important for PRPP amidotransferase feedback inhibition in other organisms by site-directed mutagenesis. With these manipulations, we managed to enhance metabolic flow through the purine pathway and to increase the production of riboflavin in the triple mutant strain 10-fold (228 mg/liter).

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3