Effects of anaerobiosis and aerobiosis on interactions of human polymorphonuclear leukocytes with the dental plaque bacteria Streptococcus mutans, Capnocytophaga ochracea, and Bacteroides gingivalis

Author:

Thompson H L1,Wilton J M1

Affiliation:

1. Medical Research Council Dental Research Unit, London Hospital Medical College, United Kingdom.

Abstract

Human polymorphonuclear leukocytes (PMN) were able to generate and release superoxide anions upon stimulation of Streptococcus mutans, Bacteroides gingivalis, and Capnocytophaga ochracea when incubated aerobically but not when incubated anaerobically. Lysozyme release and phagocytosis by PMN were independent of oxygen, and no difference between PMN incubated aerobically or anaerobically was observed (PMN stimulated by B. gingivalis released 7.6% total lysozyme when aerobic and 6.9% when anaerobic). There were variations in lysozyme release and phagocytosis for the three organisms, particularly for phagocytosis. B. gingivalis and C. ochracea yielded lower phagocytosis values than those for S. mutans, e.g., at 1 h 67% of the initial inoculum of S. mutans was phagocytosed (versus only 40% for B. gingivalis). Transmission electron microscopy showed that both S. mutans and B. gingivalis were internalized into classical phagolysosomes. In contrast, C. ochracea showed two forms of internalization; C. ochracea either formed a classical phagolysosome or was tightly bound in the cytoplasm with no surrounding cell membrane. Intracellular killing of S. mutans and C. ochracea was unaffected by anaerobiosis, but killing of C. ochracea was much lower than that of S. mutans (1 x 10(7) to 2 x 10(7) bacteria killed compared with 5.1 x 10(7) bacteria killed at 6 h). In contrast, a greater number of B. gingivalis was killed in the presence of oxygen (5.3 x 10(7) bacteria were killed when aerobically incubated and 1.9 x 10(7) bacteria were killed when anaerobically incubated). These results suggest that the ability to survive anaerobically may enable some bacteria to evade PMN killing; however, abnormal phagocytosis may represent a more efficient way to evade both oxygen-dependent and -independent killing mechanisms, leading to enhanced virulence of the organism.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3