Regulation of the Synthesis of the Angucyclinone Antibiotic Alpomycin in Streptomyces ambofaciens by the Autoregulator Receptor AlpZ and Its Specific Ligand

Author:

Bunet Robert1,Mendes Marta V.1,Rouhier Nicolas2,Pang Xiuhua1,Hotel Laurence1,Leblond Pierre1,Aigle Bertrand1

Affiliation:

1. Laboratoire de Génétique et Microbiologie, UMR INRA-UHP 1128, IFR 110

2. Interactions Arbres/Micro-organismes, UMR INRA-UHP 1136, IFR 110, Faculté des Sciences et Techniques, Nancy Université, Vandœuvre-lès-Nancy, France

Abstract

ABSTRACT Streptomyces ambofaciens produces an orange pigment and the antibiotic alpomycin, both of which are products of a type II polyketide synthase gene cluster identified in each of the terminal inverted repeats of the linear chromosome. Five regulatory genes encoding Streptomyces antibiotic regulatory proteins ( alpV , previously shown to be an essential activator gene; alpT ; and alpU ) and TetR family receptors ( alpZ and alpW ) were detected in this cluster. Here, we demonstrate that AlpZ, which shows high similarity to γ-butyrolactone receptors, is at the top of a pathway-specific regulatory hierarchy that prevents synthesis of the alp polyketide products. Deletion of the two copies of alpZ resulted in the precocious production of both alpomycin and the orange pigment, suggesting a repressor role for AlpZ. Consistent with this, expression of the five alp -located regulatory genes and of two representative biosynthetic structural genes ( alpA and alpR ) was induced earlier in the alpZ deletion strain. Furthermore, recombinant AlpZ was shown to bind to specific DNA sequences within the promoter regions of alpZ , alpV , and alpXW , suggesting direct transcriptional control of these genes by AlpZ. Analysis of solvent extracts of S. ambofaciens cultures identified the existence of a factor which induces precocious production of alpomycin and pigment in the wild-type strain and which can disrupt the binding of AlpZ to its DNA targets. This activity is reminiscent of γ-butyrolactone-type molecules. However, the AlpZ-interacting molecule(s) was shown to be resistant to an alkali treatment capable of inactivating γ-butyrolactones, suggesting that the AlpZ ligand(s) does not possess a lactone functional group.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3