Affiliation:
1. Department of Genetics, Stanford University School of Medicine, California 94305.
Abstract
Integration host factor (IHF), encoded by the himA and himD genes, is a histonelike DNA-binding protein that participates in many cellular functions in Escherichia coli, including the maintenance of plasmid pSC101. We have isolated and characterized a chromosomal mutation that compensates for the absence of IHF and allows the maintenance of wild-type pSC101 in him mutants, but does not restore IHF production. The mutation is recessive and was found to affect the gene topA, which encodes topoisomerase I, a protein that relaxes negatively supercoiled DNA and acts in concert with DNA gyrase to regulate levels of DNA supercoiling. A previously characterized topA mutation, topA10, could also compensate for the absence of IHF to allow pSC101 replication. IHF-compensating mutations affecting topA resulted in a large reduction in topoisomerase I activity, and plasmid DNA isolated from such strains was more negatively supercoiled than DNA from wild-type strains. In addition, our experiments show that both pSC101 and pBR322 plasmid DNAs isolated from him mutants were of lower superhelical density than DNA isolated from Him+ strains. A concurrent gyrB gene mutation, which reduces supercoiling, reversed the ability of topA mutations to compensate for a lack of him gene function. Together, these findings indicate that the topological state of the pSC101 plasmid profoundly influences its ability to be maintained in populations of dividing cells and suggest a model to account for the functional interactions of the him, rep, topA, and gyr gene products in pSC101 maintenance.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献