Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus

Author:

Apajalahti J H,Salkinoja-Salonen M S

Abstract

In this paper we show that a polychlorophenol degrader Rhodococcus chlorophenolicus PCP-I initially attacked polychlorinated phenols (pentachlorophenol, 2,3,4,5-, 2,3,4,6-, and 2,3,5,6-tetrachlorophenol, and 2,3,5- and 2,3,6-trichlorophenol) by tetra- or trichlorohydroquinone-producing para-hydroxylation. The novel hydroxyl group was set in position 4, whether or not a substrate had chlorine substituent in this position. The hydroxyl was in each case derived from water molecules, as was shown by following the incorporation of oxygen from H2(18)O into the reaction products. Nevertheless, the para-hydroxylation reaction required the presence of molecular oxygen, whereas further metabolism of the reaction product, tetrachlorohydroquinone, proceeded also in anaerobiosis. All polychlorinated phenols were readily transformed at 41 degrees C, but none were transformed at 44 degrees C. In contrast to this, tetrachlorohydroquinone was metabolized at a high rate at 50 degrees C, but was not metabolized at 55 degrees C. Polychlorinated phenols were specific inducers of the para-hydroxylating enzymes; para-hydroxylated reaction products did not induce these enzymes. On the other hand, the degradation of tri- and tetrachlorohydroquinone was induced by any of the chlorophenols and also by hydroquinones.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference31 articles.

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent update on chlorophenols bioremediation;Development in Wastewater Treatment Research and Processes;2023

2. Microbial resources mediated bioremediation of persistent organic pollutants;New and Future Developments in Microbial Biotechnology and Bioengineering;2019

3. Characterization of ThreeMycobacteriumspp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics;Genome Biology and Evolution;2015-06-16

4. “Rational” Management of Dichlorophenols Biodegradation by the Microalga Scenedesmus obliquus;PLoS ONE;2013-04-16

5. Variovorax defluvii sp. nov., isolated from sewage;International Journal of Systematic and Evolutionary Microbiology;2012-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3