Affiliation:
1. Institute of Technical Biochemistry, University of Stuttgart
2. Department of Clinical Chemistry and Laboratory Medicine, Robert Bosch Hospital, Stuttgart, Germany
Abstract
ABSTRACT
Standard clinical procedures for pathogen resistance identification are laborious and usually require 2 days of cultivation before the resistance can be determined unequivocally. In contrast, clinicians and patients face increasing threats from antibiotic-resistant pathogenic bacteria in terms of their frequencies and levels of resistance. A major class of microbial resistance stems from the occurrence of beta-lactamases, which, if mutated, can cause the severe extended-spectrum beta-lactamase (ESBL) or inhibitor-resistant TEM (IRT) phenotype, which cause resistance to extended-spectrum cephalosporins, monobactams, and beta-lactamase inhibitors. We describe an oligonucleotide microarray for identification of the single nucleotide polymorphisms (SNPs) of 96% of the TEM beta-lactamase variants described to date which are related to the ESBL and/or IRT phenotype. The target DNA, originating from
Escherichia coli
,
Enterobacter cloacae
, and
Klebsiella pneumoniae
cells isolated from clinical samples, was amplified and fluorescently labeled by PCR with consensus primers in the presence of cyanine 5-labeled nucleotides. The total assay, including PCR, hybridization, and image analysis, could be performed in 3.5 h. The microarray results were validated by standard clinical procedures. The microarray outperformed the standard procedures in terms of assay time and the depth of information provided. In conclusion, this array offers an attractive option for the identification and epidemiologic monitoring of TEM beta-lactamases in the routine clinical diagnostic laboratory.
Publisher
American Society for Microbiology
Reference20 articles.
1. Ambler, R. P., A. F. W. Coulson, J. M. Frere, J. M. Ghuysen, B. Joris, M. Forsman, R. C. Levesque, G. Tiraby, and S. G. Waley. 1991. A standard numbering scheme for the class-A beta-lactamases. Biochem. J.276:269-270.
2. Arlet, G., G. Brami, D. Decre, A. Flippo, O. Gaillot, P. H. Lagrange, and A. Philippon. 1995. Molecular characterization by PCR-restriction fragment length polymorphism of TEM beta-lactamases. FEMS Microbiol. Lett.134:203-208.
3. Arlet, G., and A. Philippon. 1991. Construction by polymerase chain-reaction and intragenic DNA probes for 3 main types of transferable beta-lactamases (TEM, SHV, Carb). FEMS Microbiol. Lett.82:19-25.
4. Booth, S. A., M. A. Drebot, I. E. Martin, and L. K. Ng. 2003. Design of oligonucleotide arrays to detect point mutations: molecular typing of antibiotic resistant strains of Neisseria gonorrhoeae and hantavirus infected deer mice. Mol. Cell. Probes17:77-84.
5. Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献