A Monoacylglycerol Lipase from Mycobacterium smegmatis Involved in Bacterial Cell Interaction

Author:

Dhouib Rabeb1,Laval Françoise23,Carrière Frédéric1,Daffé Mamadou23,Canaan Stéphane1

Affiliation:

1. CNRS, Aix-Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UPR 9025, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France

2. CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, F-31077 Toulouse cedex 04, France

3. Université de Toulouse (Toulouse III), 118 route de Narbonne, 31062 Toulouse, France

Abstract

ABSTRACT MSMEG _ 0220 from Mycobacterium smegmatis , the ortholog of the Rv0183 gene from M. tuberculosis , recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli . The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 ± 6 U mg −1 . Like Rv0183 in M. tuberculosis , MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG _ 0220 disrupted mutant of M. smegmatis (MsΔ0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsΔ0220) or an inactive (ComMsΔ0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsΔ0220 and ComMsΔ0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsΔ0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3