Vertebrate mRNAs with a 5'-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element

Author:

Avni D1,Shama S1,Loreni F1,Meyuhas O1

Affiliation:

1. Department of Developmental Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Abstract

The translation of mammalian ribosomal protein (rp) mRNAs is selectively repressed in nongrowing cells. This response is mediated through a regulatory element residing in the 5' untranslated region of these mRNAs and includes a 5' terminal oligopyrimidine tract (5' TOP). To further characterize the translational cis-regulatory element, we monitored the translational behavior of various endogenous and heterologous mRNAs or hybrid transcripts derived from transfected chimeric genes. The translational efficiency of these mRNAs was assessed in cells that either were growing normally or were growth arrested under various physiological conditions. Our experiments have yielded the following results: (i) the translation of mammalian rp mRNAs is properly regulated in amphibian cells, and likewise, amphibian rp mRNA is regulated in mammalian cells, indicating that all of the elements required for translation control of rp mRNAs are conserved among vertebrate classes; (ii) selective translational control is not confined to rp mRNAs, as mRNAs encoding the naturally occurring ubiquitin-rp fusion protein and elongation factor 1 alpha, which contain a 5' TOP, also conform this mode of regulation; (iii) rat rpP2 mRNA contains only five pyrimidines in its 5' TOP, yet this mRNA is translationally controlled in the same fashion as other rp mRNAs with a 5' TOP of eight or more pyrimidines; (iv) full manifestation of this mode of regulation seems to require both the 5' TOP and sequences immediately downstream; and (v) an intact translational regulatory element from rpL32 mRNA fails to exert its regulatory properties even when preceded by a single A residue.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3