Metabolism and Cometabolism of Cyclic Ethers by a Filamentous Fungus, a Graphium sp

Author:

Skinner Kristin1,Cuiffetti Lynda1,Hyman Michael2

Affiliation:

1. Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97330

2. Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695

Abstract

ABSTRACT The filamentous fungus Graphium sp. (ATCC 58400) grows on gaseous n -alkanes and diethyl ether. n -Alkane-grown mycelia of this strain also cometabolically oxidize the gasoline oxygenate methyl tert - butyl ether (MTBE). In this study, we characterized the ability of this fungus to metabolize and cometabolize a range of cyclic ethers, including tetrahydrofuran (THF) and 1,4-dioxane (14D). This strain grew on THF and other cyclic ethers, including tetrahydropyran and hexamethylene oxide. However, more vigorous growth was consistently observed on the lactones and terminal diols potentially derived from these ethers. Unlike the case in all previous studies of microbial THF oxidation, a metabolite, γ-butyrolactone, was observed during growth of this fungus on THF. Growth on THF was inhibited by the same n -alkenes and n -alkynes that inhibit growth of this fungus on n -alkanes, while growth on γ-butyrolactone or succinate was unaffected by these inhibitors. Propane and THF also behaved as mutually competitive substrates, and propane-grown mycelia immediately oxidized THF, without a lag phase. Mycelia grown on propane or THF exhibited comparable high levels of hemiacetal-oxidizing activity that generated methyl formate from mixtures of formaldehyde and methanol. Collectively, these observations suggest that THF and n -alkanes may initially be oxidized by the same monooxygenase and that further transformation of THF-derived metabolites involves the activity of one or more alcohol dehydrogenases. Both propane- and THF-grown mycelia also slowly cometabolically oxidized 14D, although unlike THF oxidation, this reaction was not sustainable. Specific rates of THF, 14D, and MTBE degradation were very similar in THF- and propane-grown mycelia.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3