Responses to Stress and Nutrient Availability by the Marine Ultramicrobacterium Sphingomonas sp. Strain RB2256

Author:

Eguchi M,Nishikawa T,Macdonald K,Cavicchioli R,Gottschal J C,Kjelleberg S

Abstract

Sphingomonas sp. strain RB2256 was isolated from Resurrection Bay in Alaska and possibly represents the dominant bacterial species in some oligotrophic marine environments. Strain RB2256 has a high-affinity nutrient uptake system when growing under nutrient-limiting conditions, and growing cells are very small (<0.08 (mu)m(sup3)). These characteristics indicate that RB2256 is highly evolved for withstanding nutrient limitations and grazing pressure by heterotrophic nanoflagellates. In this study, strain RB2256 was subjected to nutrient starvation and other stresses (high temperature, ethanol, and hydrogen peroxide). It was found that growing cells were remarkably resistant, being able to survive at a temperature of 56(deg)C, in 25 mM hydrogen peroxide, or in 20% ethanol. In addition, growing cells were generally as resistant as starved cells. The fact that vegetative cells of this strain are inherently resistant to such high levels of stress-inducing agents indicates that they possess stress resistance mechanisms which are different from those of other nondifferentiating bacteria. Only minor changes in cell volume (0.03 to 0.07 (mu)m(sup3)) and maximum specific growth rate (0.13 to 0.16 h(sup-1)) were obtained for cells growing in media with different organic carbon concentrations (0.8 to 800 mg of C per liter). Furthermore, when glucose-limited, chemostat-grown cultures or multiple-nutrient-starved batch cultures were suddenly subjected to excess glucose, maximum growth rates were reached immediately. This immediate response to nutrient upshift suggests that the protein-synthesizing machinery is constitutively regulated. In total, these results are strong evidence that strain RB2256 possesses novel physiological and molecular strategies that allow it to predominant in natural seawater.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference47 articles.

1. Starvation-induced modulations in binding protein-dependent glucose transport by the marine Vibrio sp. S14;Albertson N. H.;FEMS Microbiol. Lett.,1990

2. Austin B. 1988. Methods in aquatic bacteriology. John Wiley & Sons Chichester England.

3. Viability and isolation of marine bacteria by dilution culture: theory, procedure, and initial results;Button D. K.;Appl. Environ. Microbiol.,1993

4. Cavicchioli R. et al. Unpublished data.

5. Eguchi M. et al. Unpublished data.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3