Carbon and ammonia metabolism of Spirillum lipoferum

Author:

Okon Y,Albrecht S L,Burris R H

Abstract

Intact cells and extracts from Spirillum lipoferum rapidly oxidized malate, succinate, lactate, and pyruvate. Glucose, galactose, fructose, acetate, and citrate did not increase the rate of O2 uptake by cells above the endogenous rate. Cells grown on NH+/4 oxidized the various substrates at about the same rate as did cells grown on N2. Added oxidized nicotinamide adenine dinucleotide generally enhanced O2 uptake by extracts supplied organic acids, whereas oxidized nicotinamide adenine dinucleotide phosphate had little effect. Nitrogenase synthesis repressed by growth of cells in the presence of NH+/4 was derepressed by methionine sulfoximine or methionine sulfone. The total glutamine synthetase activity from N2-grown cells was about eight times that from NH+/4-grown S. lipoferum; the response of glutamate dehydrogenase was the opposite. The total glutamate synthetase activity from N2-grown S. lipoferum was 1.4 to 2.6 times that from NH+/4-grown cells. The levels of poly-beta-hydroxybutyrate and beta-hydroxybutyrate dehydrogenase were elevated in cells grown on N2 as compared with those grown on NH+/4. Cell-free extracts capable of reducing C2H2 have been prepared; both Mg2+ and Mn2+ are required for good activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EFFICACY OF THE ASSOCIATION “SPRING WHEAT – AZOSPIRILLUM BRАZILENSE B-7318”;Agriciltural microbiology;2023-05-18

2. Inoculant Production and Formulation of Azospirillum Species;Plant Growth Promoting Microorganisms of Arid Region;2023

3. Diagnosis and management of green algae in low land paddy fields of Cauvery delta zone, Tamil Nadu;Oryza-An International Journal on Rice;2021-03-31

4. Azospirillum;Bergey's Manual of Systematics of Archaea and Bacteria;2015-09-14

5. One Hundred Years Discovery of Nitrogen-Fixing Rhizobacteria;Biological Nitrogen Fixation;2015-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3