Transcriptional regulation of the phosphotransacetylase-encoding and acetate kinase-encoding genes (pta and ack) from Methanosarcina thermophila

Author:

Singh-Wissmann K1,Ferry J G1

Affiliation:

1. Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0305.

Abstract

Phosphotransacetylase and acetate kinase catalyze the activation of acetate to acetyl coenzyme A in the first step of methanogenesis from acetate in Methanosarcina thermophila. The genes encoding these enzymes (pta and ack) have been cloned and sequenced. They are arranged on the chromosome with pta upstream of ack (M.T. Latimer, and J. G. Ferry, J. Bacteriol. 175:6822-6829, 1993). The activities of phosphotransacetylase and acetate kinase are at least 8- to 11-fold higher in acetate-grown cells than in cells grown on methanol, monomethylamine, dimethylamine, or trimethylamine. Northern blot (RNA) analyses demonstrated that pta and ack are transcribed as an approximately 2.4-kb polycistronic message and that the regulation of enzyme synthesis occurs at the mRNA level. Primer extension analyses revealed a transcriptional start site located 27 bp upstream from the translational start of the pta gene and 24 bp downstream from a consensus archaeal boxA promoter sequence. S1 nuclease protection assays detected transcripts with four different 3' ends, each of which mapped to the beginning of four consecutive direct repeats. Northern blot analysis using an ack-specific probe detected both the 2.4-kb polycistronic transcript and a smaller 1.4-kb transcript which is the estimated size of monocistronic ack mRNA. A primer extension product was detected with an ack-specific primer; the 5' end of the product was in the intergenic region between the pta and ack genes but did not follow a consensus archaeal boxA sequence. This result, as well as detection of an additional 1.4-kb mRNA species, suggests processing of the polycistronic 2.4-kb transcript.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3