Herpes Simplex Virus Type 1 Glycoprotein E Is Required for Axonal Localization of Capsid, Tegument, and Membrane Glycoproteins

Author:

Wang Fushan1,Tang Waixing2,McGraw Helen M.1,Bennett Jean2,Enquist Lynn W.3,Friedman Harvey M.1

Affiliation:

1. Department of Medicine, Division of Infectious Diseases

2. Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

3. Department of Molecular Biology, Princeton University, Princeton, New Jersey

Abstract

ABSTRACT Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE) promotes cell-to-cell spread at basolateral surfaces of epithelial cells, but its activity in neurons is less clear. We used the mouse retina infection model and neuronal cell cultures to define the spread phenotype of gE mutant viruses. Wild-type (WT) and gE-null (NS-gEnull) viruses both infected retina ganglion cell neurons; however, NS-gEnull viral antigens failed to reach the optic nerve, which indicates a defect in axonal localization. We evaluated two Fc receptor-negative gE mutant viruses containing four amino acid inserts in the gE ectodomain. One mutant virus failed to spread from the retina into the optic nerve, while the other spread normally. Therefore, the gE ectodomain is involved in axonal localization, and the Fc receptor and neuronal spread are mediated by overlapping but distinct gE domains. In the retina infection model, virus can travel to the brain via the optic nerve from presynaptic to postsynaptic neurons (anterograde direction) or via nerves that innervate the iris and ciliary body from postsynaptic to presynaptic neurons (retrograde direction). WT virus infected the brain by anterograde and retrograde routes, whereas NS-gEnull virus failed to travel by either pathway. The site of the defect in retrograde spread remains to be determined; however, infection of rat superior cervical ganglia neurons in vitro indicates that gE is required to target virion components to the axon initial segment. The requirement for gE in axonal targeting and retrograde spread highlights intriguing similarities and differences between HSV-1 and pseudorabies virus gE.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference55 articles.

1. Barnstable, C. J., and U. C. Drager. 1984. Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience11:4847-855.

2. Basu, S., G. Dubin, M. Basu, V. Nguyen, and H. M. Friedman. 1995. Characterization of regions of herpes simplex virus type 1 glycoprotein E involved in binding the Fc domain of monomeric IgG and in forming a complex with glycoprotein I. J. Immunol.154:260-267.

3. Bearer, E. L., X. O. Breakefield, D. Schuback, T. S. Reese, and J. H. LaVail. 2000. Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc. Natl. Acad. Sci. USA97:8146-8150.

4. Specific Association of Glycoprotein B with Lipid Rafts during Herpes Simplex Virus Entry

5. Boiko, T., and B. Winckler. 2003. Picket and other fences in biological membranes. Dev. Cell5:191-192.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3