Mutation of a Single Conserved Nucleotide between the Cloverleaf and Internal Ribosome Entry Site Attenuates Poliovirus Neurovirulence

Author:

DeJesus Nidia1,Franco David1,Paul Aniko1,Wimmer Eckard1,Cello Jeronimo1

Affiliation:

1. Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York 11794-5222

Abstract

ABSTRACT The chemical synthesis of poliovirus (PV) cDNA combined with the cell-free synthesis of infectious particles yielded virus whose mouse neurovirulence was highly attenuated (J. Cello, A. V. Paul, and E. Wimmer, Science 297:1016-1018, 2002). Compared to the wild-type PV1 (Mahoney) [PV1(M)] sequence, the synthetic virus genome harbored 27 nucleotide (nt) changes deliberately introduced as genetic markers. Of the 27 nucleotide substitutions, the UA-to-GG exchanges at nucleotides 102/103, mapping to a region between the cloverleaf and the internal ribosome entry site (IRES) in the 5′-nontranslated region, were found to be involved in the observed attenuation phenotype in mice. The UA/GG mutation at nt 102/103 in the synthetic PV1(M) [sPV1(M)] background conferred also a ts phenotype of replication to the virus in human neuroblastoma cells. Conversely, the exchange of GG to wild-type (wt) UA at 102/103 in an sPV1(M) background restored wt neurovirulence in CD155 transgenic (tg) mice and suppressed the ts phenotype in SK-N-MC cells. All poliovirus variants replicated well in HeLa cells at the two temperatures, regardless of the sequence at the 102/103 locus. Analyses of variants isolated from sPV(M)-infected CD155 tg mice revealed that the G 102 G 103 -to-G 102 A 103 reversion alone reestablished the neurovirulent phenotype. This suggests that a single mutation is responsible for the observed change of the neurovirulence phenotype. sPV1(M) RNA is translated in cell extracts of SK-N-MC cells with significantly lower efficiency than PV1(M) RNA or sPV1(M) RNA with a G 102 -to-A 102 reversion. These studies suggest a function for the conserved nucleotide (A 103 ) located between the cloverleaf and the IRES which is important for replication of PV in the central nervous system of CD155 tg mice and in human cells of neuronal origin.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference61 articles.

1. Agol, V. I. 2002. Picornavirus genome: an overview, p. 127-148. In B. L. Semler and E. Wimmer (ed.), Molecular biology of picornaviruses. ASM Press, Washington, D.C.

2. Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma

3. Andino, R., G. E. Rieckhof, and D. Baltimore. 1990. A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell63:369-380.

4. Bellmunt, A., G. May, R. Zell, P. Pring-Akerblom, W. Verhagen, and A. Heim. 1999. Evolution of poliovirus type I during 5.5 years of prolonged enteral replication in an immunodeficient patient. Virology265:178-184.

5. Biedler, J. L., L. Helson, and B. A. Spengler. 1973. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res.33:2643-2652.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3