Affiliation:
1. Virology Division, Department of Infectious Diseases & Immunology, Utrecht University, 3584 CL Utrecht
2. Division of Gene Therapy, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
Abstract
ABSTRACT
The mouse hepatitis coronavirus (MHV) infects murine cells by binding of its spike (S) protein to murine CEACAM1a. The N-terminal part of this cellular receptor (soR) is sufficient for S binding and for subsequent induction of the conformational changes required for virus-cell membrane fusion. Here we analyzed whether these characteristics can be used to redirect MHV to human cancer cells. To this end, the soR domain was coupled to single-chain monoclonal antibody 425, which is directed against the human epidermal growth factor receptor (EGFR), resulting in a bispecific adapter protein (soR-425). The soR and soR-425 proteins, both produced with the vaccinia virus system, were able to neutralize MHV infection of murine LR7 cells. However, only soR-425 was able to target MHV to human EGFR-expressing cancer cells. Interestingly, the targeted infections induced syncytium formation. Furthermore, the soR-425-mediated infections were blocked by heptad repeat-mimicking peptides, indicating that virus entry requires the regular S protein fusion process. We conclude that the specific spike-binding property of the CEACAM1a N-terminal fragment can be exploited to direct the virus to selected cells by linking it to a moiety able to bind a receptor on those cells. This approach might be useful in the development of tumor-targeted coronaviruses.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献