Interferon-Induced Alterations in the Pattern of Parainfluenza Virus 5 Transcription and Protein Synthesis and the Induction of Virus Inclusion Bodies

Author:

Carlos T. S.1,Fearns R.2,Randall R. E.1

Affiliation:

1. School of Biology, University of St. Andrews, Fife KY16 9TS, Scotland, United Kingdom

2. Molecular and Cellular Pathology, Division of Pathology and Neuroscience, University of Dundee, Dundee DD1 9SY, Scotland, UK

Abstract

ABSTRACT Although parainfluenza virus 5 (simian virus 5 [SV5]) circumvents the interferon (IFN) response by blocking IFN signaling and by reducing the amount of IFN released by infected cells, its ability to circumvent the IFN response is not absolute. The effects of IFN on SV5 infection were examined in Vero cells, which do not produce but can respond to IFN, using a strain of SV5 (CPI−) which does not block IFN signaling. Thus, by infecting Vero cells with CPI− and subsequently treating the cells with exogenous IFN, it was possible to observe the effects that IFN had on SV5 infection in the absence of virus countermeasures. IFN rapidly (within 6 h) induced alterations in the relative levels of virus mRNA and protein synthesis and caused a redistribution of virus proteins within infected cells that led to the enhanced formation of virus cytoplasmic inclusion bodies. IFN induced a steeper gradient of mRNA transcription from the 3′ to the 5′ end of the genome and the production of virus mRNAs with longer poly(A) tails, suggesting that the processivity of the virus polymerase was altered in cells in an IFN-induced antiviral state. Additional evidence is presented which suggests that these findings also apply to the replication of strains of SV5, parainfluenza virus type 2, and mumps virus that block IFN signaling when they infect cells that are already in an IFN-induced antiviral state.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3