The AAUAAA Motif of Bamboo Mosaic Virus RNA Is Involved in Minus-Strand RNA Synthesis and Plus-Strand RNA Polyadenylation

Author:

Chen I-Hsuan1,Chou Wen-Jen1,Lee Pei-Yu2,Hsu Yau-Heiu1,Tsai Ching-Hsiu13

Affiliation:

1. Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan

2. Institute of Medical Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan

3. Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung, Taiwan

Abstract

ABSTRACT Bamboo mosaic virus (BaMV) has a single-stranded positive-sense RNA genome with a 5′-cap structure and a 3′ poly(A) tail. Deleting the internal loop that contains the putative polyadenylation signal (AAUAAA) in the 3′ untranslated region (UTR) of BaMV genomic RNA appeared to diminish coat protein accumulation to 2% (C. P. Cheng and C. H. Tsai, J. Mol. Biol. 288:555-565, 1999). To investigate the function of the AAUAAA motif, mutations were introduced into an infectious BaMV cDNA at each residue except the first nucleotide. After transfection of Nicotiana benthamiana protoplasts with RNA transcript, the accumulations of viral coat protein and RNAs were determined. Based on the results, three different categories could be deduced for the mutants. Category 1 includes two mutants expressing levels of the viral products similar to those of the wild-type virus. Six mutations in category 2 led to decreased to similar levels of both minus-strand and genomic RNAs. Category 3 includes the remaining seven mutations that also bring about decreases in both minus- and plus-strand RNA levels, with more significant effects on genomic RNA accumulation. Mutant transcripts from each category were used to infect N. benthamiana plants, from which viral particles were isolated. The genomic RNAs of mutants in category 3 were found to have shorter poly(A) tails. Taken together, the results suggest that the AAUAAA motif in the 3′ UTR of BaMV genomic RNA is involved not only in the formation of the poly(A) tail of the plus-strand RNA, but also in minus-strand RNA synthesis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3