Rapid identification of Candida species in blood cultures by a clinically useful PCR method

Author:

Shin J H1,Nolte F S1,Morrison C J1

Affiliation:

1. Department of Clinical Pathology, Chonnam University Medical School, Kwangju, Korea.

Abstract

Widespread use of fluconazole for the prophylaxis and treatment of candidiasis has led to a reduction in the number of cases of candidemia caused by Candida albicans but has also resulted in the emergence of candidemias caused by innately fluconazole-resistant, non-C. albicans Candida species. Given the fulminant and rapidly fatal outcome of acute disseminated candidiasis, rapid identification of newly emerging Candida species in blood culture is critical for the implementation of appropriately targeted antifungal drug therapy. Therefore, we used a PCR-based assay to rapidly identify Candida species from positive blood culture bottles. This assay used fungus-specific, universal primers for DNA amplification and species-specific probes to identify C. albicans, C. krusei, C. parapsilosis, C. tropicalis, or C. glabrata amplicons. It also used a simpler and more rapid (1.5-h) sample preparation technique than those described previously and used detergent, heat, and mechanical breakage to recover Candida species DNA from blood cultures. A simple and rapid (3.5-h) enzyme immunosorbent assay (EIA)-based format was then used for amplicon detection. One hundred fifty blood culture bottles, including 73 positive blood culture bottle sets (aerobic and anaerobic) from 31 patients with candidemia, were tested. The combined PCR and EIA methods (PCR-EIA) correctly identified all Candida species in 73 blood culture bottle sets, including bottles containing bacteria coisolated with yeasts and 3 cultures of samples from patients with mixed candidemias originally identified as single-species infections by routine phenotypic identification methods. Species identification time was reduced from a mean of 3.5 days by routine phenotypic methods to 7 h by the PCR-EIA method. No false-positive results were obtained for patients with bacteremias (n = 18), artificially produced non-Candida fungemias (n = 3), or bottles with no growth (n = 20). Analytical sensitivity was 1 cell per 2-microl sample. This method is simpler and more rapid than previously described molecular identification methods, can identify all five of the most medically important Candida species, and has the potential to be automated for use in the clinical microbiology laboratory.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3