Selective decrease in the rate of cleavage of an intracellular precursor to Rauscher leukemia virus p30 by treatment of infected cells with actinomycin D

Author:

Jamjoom G A,Naso R B,Arlinghaus R B

Abstract

The cleavage of an intracellular 67,000- to 70,000-dalton precursor, termed Pr4 to Rauscher leukemia virus (RLV) p30 protein proceeded at a slower rate when virus-producing cells were treated with actinomycin D (AMD). Treatment with AMD also caused a slight accumulation of Pr4 in purified early virus particles produced by a cell line which usually produces virions that contain little Pr4. The cleavage of other intracellular viral precursor polypeptides was not affected by treatment with AMD. Treatment of infected cells with cycloheximide, on the other hand, allowed the cleavage of Pr4 to proceed at the usual rate for a short period of time before further cleavage was drastically slowed or prevented. The cleavage of several other viral precursor polypeptides was also inhibited by treatment with cycloheximide. Different lines of evidence suggest that the mechanism of action of AMD is not due to a possible indirect effect on protein synthesis. Thus, the rate of cleavage of Pr4 was not affected by the length of pretreatment with AMD between 1 to 8 h. In addition, the combined effect of AMD and cycloheximide, at their maximal inhibitory concentrations, was greater than the effect of either drug alone, indicating the involvement of two at least partially different mechanisms in the action of AMD and cycloheximide. Furthermore, AMD did not affect the pulse labeling of viral precursor polypeptides. These results suggest that the interaction with viral RNA, whose production is inhibited by AMD, accelerates the cleavage of Pr4 to p30 during virus assembly. A hypothetical model is presented to illustrate th possible advantages of having a step in virus assembly in which genomic RNA interacts with a precursor to capsid proteins before the cleavage of that precursor.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3