GAS2 and GAS4 , a Pair of Developmentally Regulated Genes Required for Spore Wall Assembly in Saccharomyces cerevisiae

Author:

Ragni Enrico1,Coluccio Alison2,Rolli Eleonora1,Rodriguez-Peña José Manuel3,Colasante Gaia1,Arroyo Javier3,Neiman Aaron M.2,Popolo Laura1

Affiliation:

1. Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milano, Italy

2. Department of Biochemistry and Cell Biology, SUNY Stony Brook, Stony Brook, New York 11794-5215

3. Departamento de Microbiología II, Universidad Complutense de Madrid, CP 28040 Madrid, Spain

Abstract

ABSTRACT The GAS multigene family of Saccharomyces cerevisiae is composed of five paralogs ( GAS1 to GAS5 ). GAS1 is the only one of these genes that has been characterized to date. It encodes a glycosylphosphatidylinositol-anchored protein functioning as aβ (1,3)-glucan elongase and required for proper cell wall assembly during vegetative growth. In this study, we characterize the roles of the GAS2 and GAS4 genes. These genes are expressed exclusively during sporulation. Their mRNA levels showed a peak at 7 h from induction of sporulation and then decreased. Gas2 and Gas4 proteins were detected and reached maximum levels between 8 and 10 h from induction of sporulation, a time roughly coincident with spore wall assembly. The double null gas2 gas4 diploid mutant showed a severe reduction in the efficiency of sporulation, an increased permeability of the spores to exogenous substances, and production of inviable spores, whereas the single gas2 and gas4 null diploids were similar to the parental strain. An analysis of spore ultrastructure indicated that the loss of Gas2 and Gas4 proteins affected the proper attachment of the glucan to the chitosan layer, probably as a consequence of the lack of coherence of the glucan layer. The ectopic expression of GAS2 and GAS4 genes in a gas1 null mutant revealed that these proteins are redundant versions of Gas1p specialized to function in a compartment at a pH value close to neutral.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3