2-Deoxyribose Gene-Enzyme Complex in Salmonella typhimurium I. Isolation and Enzymatic Characterization of 2-Deoxyribose-Negative Mutants

Author:

Hoffee Patricia A.1

Affiliation:

1. Department of Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461

Abstract

Salmonella typhimurium was found to utilize 2-deoxyribose as a sole carbon and energy source. Cells grown in the presence of deoxyribose contained increased levels of deoxyribose kinase, thymidine phosphorylase, and two forms of deoxyribose-5-phosphate aldolase (DR5P aldolase). One form of DR5P aldolase was induced by deoxyribose and coordinately regulated with deoxyribose kinase. The second form of DR5P aldolase was induced by deoxyribose-5-phosphate and coordinately regulated with thymidine phosphorylase. Mutants unable to ferment deoxyribose have been isolated and shown to be lacking either deoxyribose kinase or deoxyribose permease, but none has been found from which DR5P aldolase is missing. Thymine-requiring mutants which are able to grow on low levels of thymine have been isolated and shown, in some cases, to be lacking one or both DR5P aldolases.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference13 articles.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3