Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160

Author:

Freed E O1,Myers D J1,Risser R1

Affiliation:

1. McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706.

Abstract

The envelope glycoproteins of the human immunodeficiency virus (HIV) type 1 are synthesized as a precursor molecule, gp160, which is cleaved to generate the two mature envelope glycoproteins, gp120 and gp41. The cleavage reaction, which is mediated by a host protease, occurs at a sequence highly conserved in retroviral envelope glycoprotein precursors. We have investigated the sequence requirements for this cleavage reaction by introducing four single-amino-acid changes into the glutamic acid-lysine-arginine sequence immediately amino terminal to the site of cleavage. We have also examined the effects of these mutations on the syncytium formation induced by HIV envelope glycoproteins. Our results indicate that a glutamic acid to glycine change at gp120 amino acid 516, a lysine to isoleucine change at amino acid 517, and an arginine to lysine change at amino acid 518 affect neither gp160 cleavage nor syncytium formation. The results obtained with the arginine to lysine change at amino acid 518 differ significantly from the results obtained with the same mutation at the envelope precursor cleavage site of a murine leukemia virus (E. O. Freed, and R. Risser, J. Virol. 61:2852-2856, 1987). An arginine to threonine mutation at gp120 amino acid 518, the terminal residue of gp120, abolishes both gp160 cleavage and syncytium formation. These findings demonstrate that despite its highly conserved nature, the basic pair of amino acids at the site of gp160 cleavage is not absolutely required for proper envelope glycoprotein processing. This report also supports the idea that cleavage of gp160 is required for activation of the HIV envelope fusion function.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3