Effects of the SpoVT Regulatory Protein on the Germination and Germination Protein Levels of Spores of Bacillus subtilis

Author:

Ramirez-Peralta Arturo1,Stewart Kerry-Ann V.1,Thomas Stacy K.1,Setlow Barbara1,Chen Zhan2,Li Yong-qing2,Setlow Peter1

Affiliation:

1. Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut, USA

2. Department of Physics, East Carolina University, Greenville, North Carolina, USA

Abstract

ABSTRACT Bacillus subtilis isolates lacking the SpoVT protein, which regulates gene expression in developing forespores, gave spores that released their dipicolinic acid (DPA) via germinant receptor (GR)-dependent germination more rapidly than wild-type spores. Non-GR-dependent germination via dodecylamine was more rapid with spoVT spores, but germination via Ca-DPA was slower. The effects of a spoVT mutation on spore germination were seen with spores made in rich and poor media, and levels of SpoVT-LacZ were elevated 2-fold in poor-medium spores; however, elevated SpoVT levels were not the only cause of the slower GR-dependent germination of poor-medium spores. The spoVT spores had ≥5-fold higher GerA GR levels, ∼2-fold elevated GerB GR levels, wild-type levels of a GerK GR subunit and the GerD protein required for normal GR-dependent germination, ∼2.5-fold lower levels of the SpoVAD protein involved in DPA release in spore germination, and 30% lower levels of DNA protective α/β-type small, acid-soluble spore proteins. With one exception, the effects on protein levels in spoVT spores are consistent with the effects of SpoVT on forespore transcription. The spoVT spores were also more sensitive to UV radiation and outgrew slowly. While spoVT spores' elevated GR levels were consistent with their more rapid GR-dependent germination, detailed analysis of the results suggested that there is another gene product crucial for GR-dependent spore germination that is upregulated in the absence of SpoVT. Overall, these results indicate that SpoVT levels during spore formation have a major impact on the germination and the resistance of the resultant spores.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3