Tetrahymena thermophila JMJD3 Homolog Regulates H3K27 Methylation and Nuclear Differentiation

Author:

Chung Pei-Han1,Yao Meng-Chao1

Affiliation:

1. Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, and Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan

Abstract

ABSTRACT Histone H3K27me3 modification is an important regulator for development and gene expression. In Tetrahymena thermophila , the complex chromatin dynamics of H3K27me3 marks during nuclear development suggested that an H3K27me3 demethylase might exist. Here, we report an H3K27me3 demethylase homolog, JMJ1 , in Tetrahymena . During conjugation, JMJ1 expression is upregulated and the protein is localized first in the parental macronucleus and then in the new macronucleus. In conjugating cells, knockdown of JMJ1 expression resulted in a severe reduction in the production of progeny, suggesting that JMJ1 is essential for Tetrahymena conjugation. Furthermore, knockdown of JMJ1 resulted in increased H3K27 trimethylation in the new macronucleus and reduced transcription of genes related to DNA elimination, while the DNA elimination process was also partially blocked. Knockdown of the H3K27 methyltransferase EZL2 but not that of EZL1 partially restored progeny production in JMJ1 -knockdown cells and reduced abnormal H3K27me3 accumulation in the new macronucleus. Taken together, these results demonstrate a critical role for JMJ1 in regulating H3K27me3 during conjugation and the importance of JMJ1 in regulating gene expression in the new macronucleus but not in regulating the formation of heterochromatin associated with programmed DNA deletion.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3