Anthrax Lethal Toxin Induces Ketotifen-Sensitive Intradermal Vascular Leakage in Certain Inbred Mice

Author:

Gozes Yehoshua1,Moayeri Mahtab1,Wiggins Jason F.1,Leppla Stephen H.1

Affiliation:

1. Microbial Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892

Abstract

ABSTRACT Bacillus anthracis lethal toxin (LT) is a bipartite toxin composed of protective antigen (PA) and lethal factor (LF). Injection of LT produces clinical signs characteristic of anthrax infection, including pleural edema and vascular collapse in various animal models. We utilized the classic Miles leakage assay to quantify vascular leakage in mice. LT injected intradermally induced leakage as early as 15 to 25 min in some inbred mouse strains, but not in others, whereas PA or LF individually did not induce leakage. A third component of anthrax toxin, edema factor, did not induce leakage alone or with PA. Leakage was quantified in eight mouse strains, and no correlation was found between sensitivity to intradermal leakage and sensitivity to the lethality of systemically administered LT. The leakage could be inhibited by ketotifen, an inhibitor of mast cell degranulation, but not by azelastine, a histamine receptor 1 antagonist, or by ketanserin, a serotonin 5-HT2A receptor antagonist. LT was cytotoxic to MC/9 mast cells (in vitro) by 7 h after toxin treatment but did not induce histamine release from these cells. Mast cell-deficient mice exhibited the leakage event and had no increased resistance to systemic LT. Human umbilical vein endothelial cells were resistant to LT over 12 h, with only 20% of cells succumbing by 24 h, suggesting that endothelial cell killing is not the cause of the rapid LT-mediated leakage event. We describe here a ketotifen-sensitive vascular leakage event induced by LT which is the most rapid in vivo or in vitro LT-mediated effect reported to date.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3