Aluminum Elicits Exocellular Phosphatidylethanolamine Production in Pseudomonas fluorescens

Author:

Appanna V D,Pierre M S

Abstract

Pseudomonas fluorescens ATCC 13525 was found to grow in a minimal mineral medium supplemented with millimolar amounts of aluminum, a known environmental toxicant. During the stationary phase of growth, the trivalent metal was localized in a phosphatidylethanolamine (PE)-containing residue. The concentration of PE in pellets ranged from 1.7 to 13.9 mg ml of culture(sup-1) in media supplemented with 1 to 30 mM aluminum. Although the gelatinous residue was observed during the stationary phase of growth, ultracentrifugation and dialysis experiments revealed that PE was produced from earlier stages of incubation and was associated with aluminum. A sharp diminution in the levels of PE and aluminum in the spent fluid was concomitant with the formation of the insoluble deposit. The aluminum content of the soluble cellular fraction increased during growth and reached an optimum of 1.85 mM of test metal at 45 h in cultures with 15 mM aluminum. Further incubation, however, led to a marked decrease in the cellular aluminum content, and during the stationary phase of growth, only trace amounts of the trivalent metal were detected in this fraction. When 45-h cells were incubated in fresh citrate medium, most of the intracellular aluminum was secreted in the spent fluid and citrate was rapidly consumed. Aluminum efflux was also observed in cultures in which d-glucose was substituted for citrate. However, no efflux of this trivalent metal was evident in media devoid of either citrate or d-glucose. Scanning electron microscopic studies and X-ray energy-dispersive analyses of the dialyzed supernatant aided in the visualization of nodule-like aluminum- and phosphorus-rich bodies associated with thread-like carbon-, oxygen-, and phosphorus-containing structures. Transmission electron microscopic and electron energy loss spectroscopic analyses revealed the presence of aluminum within bacteria after 45 h of incubation. Cells harvested after aluminum insolubilization did not shown aluminum inclusions. This aluminum-tolerant microbe may have potential application in bioremediation processes.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference25 articles.

1. Gallium toxicity and adaptation in Pseudomonas fluorescens;Al-Aoukaty A.;FEMS Microbiol. Lett.,1992

2. Exocellular and intercellular accumulation of lead in Pseudomonas fluorescens ATCC 13525 is mediated by the phosphate content of the growth medium;Al-Aoukaty A.;FEMS Microbiol. Lett.,1991

3. Aluminum, chromium and manganese detoxification mechanisms in Pseudomonas syringae: an x-ray fluorescence study;Al-Aoukaty A.;Microbios,1992

4. Indium detoxification in Pseudomonas fluorescens;Anderson S.;Environ. Pollut.,1993

5. Microbial formation of crystalline strontium carbonate;Anderson S.;FEMS Microbiol. Lett.,1994

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3