Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution

Author:

Ruepp A1,Müller H N1,Lottspeich F1,Soppa J1

Affiliation:

1. Max-Planck-Institut für Biochemie, Martinsried, Germany.

Abstract

Halobacterium halobium (salinarium) is able to grow fermentatively via the arginine deiminase pathway, which is mediated by three enzymes and one membrane-bound arginine-ornithine antiporter. One of the enzymes, catabolic ornithine transcarbamylase (cOTCase), was purified from fermentatively grown cultures by gel filtration and ammonium sulfate-mediated hydrophobic chromatography. It consists of a single type of subunit with an apparent molecular mass of 41 kDa. As is common for proteins of halophilic Archaea, the cOTCase is unstable below 1 M salt. In contrast to the cOTCase from Pseudomonas aeruginosa, the halophilic enzyme exhibits Michaelis-Menten kinetics with both carbamylphosphate and ornithine as substrates with Km values of 0.4 and 8 mM, respectively. The N-terminal sequences of the protein and four peptides were determined, comprising about 30% of the polypeptide. The sequence information was used to clone and sequence the corresponding gene, argB. It codes for a polypeptide of 295 amino acids with a calculated molecular mass of 32 kDa and an amino acid composition which is typical of halophilic proteins. The native molecular mass was determined to be 200 kDa, and therefore the cOTCase is a hexamer of identical subunits. The deduced protein sequence was compared to the cOTCase of P. aeruginosa and 14 anabolic OTCases, and a phylogenetic tree was constructed. The halobacterial cOTCase is more distantly related to the cOTCase than to the anabolic OTCase of P. aeruginosa. It is found in a group with the anabolic OTCases of Bacillus subtilis, P. aeruginosa, and Mycobacterium bovis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3