Identification of Genetic Determinants Responsible for the Rapid Immunosuppressive Activity and the Low Leukemogenic Potential of a Variant of Friend Leukemia Virus, FIS-2

Author:

Dai Hong Yan1,Troseth Gunn Irene1,Gunleksrud Merete1,Bruland Torunn1,Solberg Liss Anne1,Aarset Harald2,Kristiansen Lena Irene1,Dalen Are3

Affiliation:

1. Unigen Center for Molecular Biology, Norwegian University of Science and Technology, N-7005 Trondheim,1 and

2. Department of Pathology2 and

3. Department of Microbiology,3 Trondheim Regional Hospital, N-7006 Trondheim, Norway

Abstract

ABSTRACT An immunosuppressive variant of Friend murine leukemia virus (F-MuLV), FIS-2, induces suppression of the primary antibody response against sheep erythrocytes (SRBC) in adult NMRI mice more efficiently than the prototype F-MuLV clone 57 (cl.57). It is, however, less potent than F-MuLV cl.57 in inducing erythroleukemia upon inoculation into newborn NMRI mice. Nucleotide sequence analysis shows a high degree of homology between the two viruses. Single point mutations are scattered over both the gag and the env encoding regions. The most notable mutations are the deletion of one direct repeat and a few single point mutations occurring in the binding sites for cellular transcriptional factors in the FIS-2 long terminal repeat region (LTR). To define the genetic determinants responsible for the pathogenic properties of FIS-2, we constructed six chimeras between FIS-2 and F-MuLV cl.57. Adult mice were infected with the chimeras, and their primary antibody responses against SRBC were investigated. The results showed that the fragment encompassing the FIS-2 env encoding region SU is responsible for the increased immunosuppressive activity in adult mice. A leukemogenicity assay was also performed by infecting newborn mice with the chimeras. Consistent with the previous studies, it showed that the deletion of one direct repeat in the FIS-2 LTR is responsible for the long latent period of erythroleukemia induced by FIS-2 in newborn-inoculated mice. However, studies of cell type-specific transcriptional activities of FIS-2 and F-MuLV cl.57 LTRs using LTR-chloramphenicol acetyltransferase constructs showed that the deletion of one direct repeat does not reduce the transcriptional activity of the FIS-2 LTR. The activity is either comparable to or higher than the transcriptional activity of the F-MuLV cl.57 LTR in the different cell lines that we used, even in an erythroleukemia cell line. It seems that the high transcriptional strength of the FIS-2 LTR is not sufficient to give FIS-2 a high leukemogenic effect. This suggestion is inconsistent with the previous suggestion that the transcriptional strength of an LTR in a given cell type is correlated with the leukemogenic potential in the corresponding tissue. In other words, these data indicate that the direct repeats in the F-MuLV LTR may play other roles besides transcriptional enhancer in the leukemogenesis of F-MuLV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3