FK506 Maturation Involves a Cytochrome P450 Protein-Catalyzed Four-Electron C-9 Oxidation in Parallel with a C-31 O -Methylation

Author:

Chen Dandan12,Zhang Lihan3,Pang Bo1,Chen Jing13,Xu Zhinan2,Abe Ikuro3,Liu Wen1

Affiliation:

1. State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China

2. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China

3. Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan

Abstract

ABSTRACT FK506, structurally similar to FK520 and rapamycin, is an α-keto amide bonding-containing, macrolide natural product that exhibits potent immunosuppressive activity and moderate antifungal activity. FK506 biosynthesis requires a hybrid polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) system to construct the skeleton of the macrolide. The mechanism for tailoring this macrolide to furnish FK506 remains poorly understood. In this study, we report a maturation paradigm common for FK506, FK520, and rapamycin, by characterizing two conserved regiospecific, post-PKS-NRPS modifications in an FK506-producing Streptomyces tsukubaensis strain. A cytochrome P450 protein, FkbD, catalyzes a less common, four-electron oxidation at C-9 to give a rarely found α-keto amide group, whereas a methyltransferase, FkbM, is responsible for O -methylation at C-31 to afford a methoxy group. Both FkbD and FkbM are highly tolerant in their substrate choice; therefore, the order of FkbD- and FkbM-catalyzed reactions is interchangeable in the FK506 biosynthetic pathway. Inactivation of fkbD produced a new intermediate, 9-deoxo-FK506, which displayed antifungal activity lower than that of FK506. Taking previously reported bioassay results regarding the intermediates 9-deoxo-31- O -demethyl-FK506 and 31- O -demethyl-FK506 into account, it is clear that the modifications catalyzed by FkbD and FkbM are of importance to reach the full biological activity of FK506 by forming a key structure motif that is necessary for interaction of the molecule with the receptor and, subsequently, the downstream intracellular responses.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3