Microscale Distribution of Populations and Activities of Nitrosospira and Nitrospira spp. along a Macroscale Gradient in a Nitrifying Bioreactor: Quantification by In Situ Hybridization and the Use of Microsensors

Author:

Schramm Andreas1,de Beer Dirk1,van den Heuvel Johan C.2,Ottengraf Simon2,Amann Rudolf1

Affiliation:

1. Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany,1 and

2. Department of Chemical Engineering, University of Amsterdam, NL-1018WV Amsterdam, The Netherlands2

Abstract

ABSTRACT The change of activity and abundance of Nitrosospira and Nitrospira spp. along a bulk water gradient in a nitrifying fluidized bed reactor was analyzed by a combination of microsensor measurements and fluorescence in situ hybridization. Nitrifying bacteria were immobilized in bacterial aggregates that remained in fixed positions within the reactor column due to the flow regimen. Nitrification occurred in a narrow zone of 100 to 150 μm on the surface of these aggregates, the same layer that contained an extremely dense community of nitrifying bacteria. The central part of the aggregates was inactive, and significantly fewer nitrifiers were found there. Under conditions prevailing in the reactor, i.e., when ammonium was limiting, ammonium was completely oxidized to nitrate within the active layer of the aggregates, the rates decreasing with increasing reactor height. To analyze the nitrification potential, profiles were also recorded in aggregates subjected to a short-term incubation under elevated substrate concentrations. This led to a shift in activity from ammonium to nitrite oxidation along the reactor and correlated well with the distribution of the nitrifying population. Along the whole reactor, the numbers of ammonia-oxidizing bacteria decreased, while the numbers of nitrite-oxidizing bacteria increased. Finally, volumetric reaction rates were calculated from microprofiles and related to cell numbers of nitrifying bacteria in the active shell. Therefore, it was possible for the first time to estimate the cell-specific activity of Nitrosospira spp. and hitherto-uncultured Nitrospira -like bacteria in situ.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3