A Glutamine Transport Gene, glnQ , Is Required for Fibronectin Adherence and Virulence of Group B Streptococci

Author:

Tamura Glen S.1,Nittayajarn Aphakorn1,Schoentag Deborah L.1

Affiliation:

1. Children's Hospital and Regional Medical Center and the University of Washington, Seattle, Washington

Abstract

ABSTRACT Group B streptococci (GBS) are a leading cause of neonatal sepsis and meningitis. GBS adhere to fibronectin when it is attached to a solid phase. We isolated a Tn 917 transposon mutant, COH1-GT1, which shows decreased adherence to fibronectin. COH1-GT1 also shows decreased adherence to and invasion of respiratory epithelial cells in vitro and decreased virulence in vivo. COH1-GT1 contains a Tn 917 insertion in a homolog of glnQ , a gene from Escherichia coli which is required for glutamine transport and codes for a cytoplasmic ATP-binding cassette protein. To confirm that the decreased fibronectin adherence of COH1-GT1 was due to the mutation in glnQ , we constructed COH1-GT2, a strain with a nonpolar site-directed mutation in glnQ. COH1-GT2 showed decreased binding to fibronectin. We also demonstrated that complementation of glnQ in trans restored fibronectin adherence to COH1-GT1. COH1-GT1 shows decreased uptake of radiolabeled glutamine and is resistant to the toxic glutamine analog γ- l -glutamylhydrazide, demonstrating that the glnQ gene is required for glutamine transport in GBS. glnQ lacks a signal sequence and is a cytoplasmic protein in E. coli and thus is unlikely to act as a fibronectin adhesin. glnQ is transcribed in an operon with a putative glutamine permease gene, glnP , which has a novel predicted structure containing three distinct domains linked in a single gene. The first two domains are putative glutamine binding domains with homology to the E. coli periplasmic glutamine binding gene glnH . The third is a putative permease domain with homology to the E. coli glutamine permease gene glnP. RT-PCR analysis demonstrated that glnP and glnQ are contained within a single transcript. Transcription of scpB , encoding the only known fibronectin-binding adhesin of GBS, is unaffected. We speculate that glnQ may regulate expression of fibronectin adhesins by affecting cytoplasmic glutamine levels and that regulation may be posttranscriptional.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3