Interaction of Recombinant Norwalk Virus Particles with the 105-Kilodalton Cellular Binding Protein, a Candidate Receptor Molecule for Virus Attachment

Author:

Tamura Masaru12,Natori Katsuro1,Kobayashi Masahiko2,Miyamura Tatsuo1,Takeda Naokazu1

Affiliation:

1. Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640,1and

2. Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657,2Japan

Abstract

ABSTRACT Norwalk virus (NV), responsible for outbreaks of acute gastroenteritis, comprises the species of the genus Norwalk-like viruses in the family Caliciviridae . Although the study of the molecular biology of NV has been hampered by a lack of culture systems or small experimental animal models, virus-like particles (VLPs) generated with recombinant baculoviruses harboring the capsid protein gene of NV provide a useful tool for investigating NV-cell interactions. In this study, the attachment of the recombinant VLPs derived from the Ueno virus (UEV), a strain belonging to the genogroup II NVs, to mammalian and insect cells was examined. Kinetic analyses of the binding of the recombinant VLPs of the UEV (rUEVs) to Caco-2 cells demonstrated that the binding was specific and occurred in a dose-dependent manner. Approximately 7.5% of the prebound rUEVs were internalized into the Caco-2 cells. Enzymatic and chemical modification of Caco-2 cell surface molecules suggested that the binding was directly mediated by a protein-protein interaction. A virus overlay protein-binding assay (VOPBA) indicated that rUEVs appeared to bind to a 105-kDa molecule, designated as the NV attachment (NORVA) protein. Furthermore, the assay indicated that its native conformational structure was indispensable for the binding activity. In Caco-2 cells, the NORVA protein was detected when VOPBA was carried out with the VLPs from Seto and Funabashi viruses, which are serologically different NVs from UEV, used as probes. The binding of rUEVs to NORVA protein was also observed in six mammalian cell lines other than Caco-2. These data suggest that the attachment of NV to mammalian cells is mediated by NORVA protein, which is ubiquitously expressed in the mammalian cells. The present study is the first report on the role of the cellular molecule in the binding of recombinant VLPs of NV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3