Complex Formation by Human Cytomegalovirus Glycoproteins M (gpUL100) and N (gpUL73)

Author:

Mach M.1,Kropff B.1,Dal Monte P.2,Britt W.3

Affiliation:

1. Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Erlangen, Germany1;

2. Laboratorio di Virologia Policlinico S. Orsola, Universita degli Studi di Bologna, Bologna, Italy2; and

3. Departments of Pediatrics and Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama3

Abstract

ABSTRACT The envelope glycoproteins of human cytomegalovirus (HCMV) virions are incompletely characterized. We have analyzed complex formation between glycoprotein M (gM or gpUL100) and a second glycoprotein. gM-homologous proteins are conserved throughout the herpesvirus family and represent type III membrane proteins containing multiple hydrophobic sequences. In extracellular HCMV particles, gM was found to be complexed through disulfide bonds to a second protein with an apparent molecular mass of 50 to 60 kDa. The 50- to 60-kDa protein was found to be derived from reading frame UL73 of HCMV strain AD169. UL73-homologous genes are also conserved within herpesviruses. When transiently expressed by itself, the UL73 gene product consisted of a protein of 18 kDa. However, in the presence of gM, the UL73 gene product was posttranslationally modified to the 50- to 60-kDa species. Thus, gM and the UL73 gene product, which represents the gN homolog of herpesviruses, form a disulfide-linked complex in HCMV virions. Transient expression of gM and gN followed by fluorescence imaging with monoclonal antibodies against either protein demonstrated that complex formation was required for transport of the proteins from the endoplasmic reticulum to the Golgi and trans -Golgi compartments. Finally, we tested the gM-gN complex for reactivity with sera from HCMV-seropositive donors. Whereas most sera failed to react with either gM or gN when expressed alone, 62% of sera were positive for the gM-gN complex. Because a murine monoclonal antibody reactive with gN in the gM-gN complex efficiently neutralizes infectious virus, the gM-gN complex may represent a major antigenic target of antiviral antibody responses.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3