Attenuation of Tick-Borne Encephalitis Virus by Structure-Based Site-Specific Mutagenesis of a Putative Flavivirus Receptor Binding Site

Author:

Mandl Christian W.1,Allison Steven L.1,Holzmann Heidemarie1,Meixner Tamara1,Heinz Franz X.1

Affiliation:

1. Institute of Virology, University of Vienna, A-1095 Vienna, Austria

Abstract

ABSTRACT The impact of a specific region of the envelope protein E of tick-borne encephalitis (TBE) virus on the biology of this virus was investigated by a site-directed mutagenesis approach. The four amino acid residues that were analyzed in detail (E308 to E311) are located on the upper-lateral surface of domain III according to the X-ray structure of the TBE virus protein E and are part of an area that is considered to be a potential receptor binding determinant of flaviviruses. Mutants containing single amino acid substitutions, as well as combinations of mutations, were constructed and analyzed for their virulence in mice, growth properties in cultured cells, and genetic stability. The most significant attenuation in mice was achieved by mutagenesis of threonine 310. Combining this mutation with deletion mutations in the 3′-noncoding region yielded mutants that were highly attenuated. The biological effects of mutation Thr 310 to Lys, however, could be reversed to a large degree by a mutation at a neighboring position (Lys 311 to Glu) that arose spontaneously during infection of a mouse. Mutagenesis of the other positions provided evidence for the functional importance of residue 308 (Asp) and its charge interaction with residue 311 (Lys), whereas residue 309 could be altered or even deleted without any notable consequences. Deletion of residue 309 was accompanied by a spontaneous second-site mutation (Phe to Tyr) at position 332, which in the three-dimensional structure of protein E is spatially close to residue 309. The information obtained in this study is relevant for the development of specific attenuated flavivirus strains that may serve as future live vaccines.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3