CD21-Mediated Entry and Stable Infection by Epstein-Barr Virus in Canine and Rat Cells

Author:

Yang Lixin1,Maruo Seiji1,Takada Kenzo1

Affiliation:

1. Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan

Abstract

ABSTRACT We developed an adenovirus vector for transduction of the human CD21 gene (Adv-CD21), the Epstein-Barr virus (EBV)-specific receptor on human B lymphocytes, to overcome the initial barrier of EBV infection in nonprimate mammalian cells. Inoculation of Adv-CD21 followed by exposure to recombinant EBV carrying a selectable marker resulted in the successful entry of EBV into three of seven nonprimate mammalian cell lines as evidenced by expression of EBV-determined nuclear antigen (EBNA). The EBV-susceptible cell lines included rat glioma-derived 9L, rat mammary carcinoma-derived c-SST-2, and canine kidney-derived MDCK. Subsequent selection culture with G418 yielded drug-resistant cell clones. In these cell clones, EBV existed as an episomal form, as evidenced through the Gardella gel technique. Among the known EBV latency-associated gene products, EBV-encoded small RNAs, EBNA1 and transcripts from the Bam HI-A rightward reading frame (BARF0), and latent membrane protein 2A were expressed in all EBV-infected cell clones. The viral lytic events could be induced in these cell clones by simultaneous treatment with 12- O -tetradecanoylphorbol-13-acetate and n -butyric acid, but they were abortive, and infectious virus was not produced. These results indicate that once the initial barrier for attachment is overcome artificially, EBV can establish a stable infection in some nonprimate mammalian cells, and they raise the possibility that transgenic animals with the human CD21 gene could provide an animal model for EBV infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3