Three-Dimensional Structure of the Human Herpesvirus 8 Capsid

Author:

Wu Lijun1,Lo Pierrette2,Yu Xuekui2,Stoops James K.2,Forghani B.1,Zhou Z. Hong2

Affiliation:

1. Viral and Rickettsial Disease Laboratory, Division of Communicable Disease Control, California Department of Health Services, Berkeley, California 94720,1and

2. Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 770302

Abstract

ABSTRACT Human herpesvirus 8 (HHV-8), or Kaposi's sarcoma-associated herpesvirus, is a gammaherpesvirus implicated in all forms of Kaposi's sarcoma and certain lymphomas. HHV-8 has been extensively characterized, both biochemically and immunologically, since its first description in 1994. However, its three-dimensional (3D) structure remained heretofore undetermined largely due to difficulties in viral purification. We have used log-phase cultures of body cavity-based lymphoma 1 cells induced with 12- O -tetradecanoylphorbol-13-acetate to obtain HHV-8 capsids for electron cryomicroscopy and computer reconstruction. The 3D structure of the HHV-8 capsids revealed a capsid shell composed of 12 pentons, 150 hexons, and 320 triplexes arranged on a T=16 icosahedral lattice. This structure is similar to those of herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV), which are prototypical members of alpha- and betaherpesviruses, respectively. The inner radius of the HHV-8 capsid is identical to that of the HSV-1 capsid but is smaller than that of the HCMV capsid, which is consistent with the relative sizes of the genomes they enclose. While the HHV-8 capsid exhibits many structural similarities to the HSV-1 capsid, our reconstruction shows two major differences: its hexons lack the “horn-shaped” VP26 densities bound to the HSV-1 hexon subunits, and the HHV-8 triplexes appear smaller and less elongated than those of HSV-1. These differences are in excellent agreement with our sequence comparisons of HHV-8 and HSV-1 capsid proteins. This gammaherpesvirus capsid structure complements previous structural studies on alpha- and betaherpesviruses in providing an account of structural similarities and differences among capsids representing all human herpesvirus subfamilies.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3